Spotify-Agent

Spotify-Agent

Okay, this is a complex project, and I can't provide you with a complete, ready-to-run MCP (Minecraft Protocol) server implementation here. Building a full MCP server with Spotify, Last.fm, and internet integration for music recommendations requires significant coding effort and knowledge of several technologies. However, I can give you a detailed outline, code snippets (in Python, as it's commonly used for these tasks), and guidance to get you started. **I. Project Overview** The goal is to create an MCP server plugin (or a standalone server that interacts with a Minecraft server) that: 1. **Connects to Spotify and Last.fm APIs:** Retrieves user listening history, track information, artist information, and similar artist data. 2. **Interacts with the Internet (e.g., for Lyrics):** Fetches lyrics for songs. 3. **Stores and Processes Music Data:** Creates a database or data structure to store user preferences, track information, and recommendation data. 4. **Provides Minecraft Commands:** Allows players to request recommendations, view their listening history, and interact with the music system within the game. 5. **Delivers Recommendations:** Generates music recommendations based on user data and similarity algorithms. **II. Technology Stack** * **Minecraft Server:** You'll need a Minecraft server (e.g., Spigot, Paper, Fabric). Choose one you're comfortable with. * **MCP Server Library/Framework:** Choose a library that simplifies MCP server development. Popular options include: * **Python:** `mcstatus`, `nbt`, `minecraft-protocol` (for lower-level control) * **Java:** Spigot API, Paper API (if you're building a plugin) * **Programming Language:** Python or Java are good choices. Python is often preferred for scripting and API interactions. * **Spotify API:** Use the Spotify Web API (requires a Spotify Developer account). * **Last.fm API:** Use the Last.fm API (requires a Last.fm API key). * **Lyrics API (Optional):** Consider using a lyrics API like Lyrics.ovh or Musixmatch API. * **Database (Optional):** Consider using a database (e.g., SQLite, MySQL, PostgreSQL) to store user data and music information. SQLite is a good choice for smaller projects. * **Recommendation Algorithm:** Implement a recommendation algorithm (e.g., collaborative filtering, content-based filtering, hybrid approach). **III. Detailed Steps and Code Snippets (Python Example)** **1. Setting up the MCP Server (Python)** ```python import socket import struct import json import threading # Configuration HOST = 'localhost' PORT = 25565 # Default Minecraft port def handle_client(conn, addr): print(f"Connected by {addr}") try: # Handshake data = conn.recv(256) packet_length = struct.unpack('>i', data[:4])[0] packet_id = struct.unpack('>b', data[4:5])[0] if packet_id == 0x00: # Handshake packet handshake_data = json.loads(data[5:].decode('utf-8')) print(f"Handshake data: {handshake_data}") # Status Request data = conn.recv(256) packet_length = struct.unpack('>i', data[:4])[0] packet_id = struct.unpack('>b', data[4:5])[0] if packet_id == 0x00: # Status Request # Respond with server status status = { "version": { "name": "My Music Server", "protocol": 754 # Example protocol version }, "players": { "max": 100, "online": 0, "sample": [] }, "description": { "text": "A server for music recommendations!" } } status_json = json.dumps(status) status_bytes = status_json.encode('utf-8') status_length = len(status_bytes) response = struct.pack('>i', status_length + 1) + struct.pack('>b', 0x00) + status_bytes conn.sendall(response) # Ping Request data = conn.recv(256) packet_length = struct.unpack('>i', data[:4])[0] packet_id = struct.unpack('>b', data[4:5])[0] if packet_id == 0x01: # Ping Request ping_payload = data[5:] response = struct.pack('>i', len(ping_payload) + 1) + struct.pack('>b', 0x01) + ping_payload conn.sendall(response) except Exception as e: print(f"Error handling client: {e}") finally: conn.close() print(f"Connection closed with {addr}") def start_server(): server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Allow reuse of the address server_socket.bind((HOST, PORT)) server_socket.listen(5) print(f"Server listening on {HOST}:{PORT}") while True: conn, addr = server_socket.accept() client_thread = threading.Thread(target=handle_client, args=(conn, addr)) client_thread.start() if __name__ == "__main__": start_server() ``` **Explanation:** * **`socket`:** Creates a socket for network communication. * **`struct`:** Packs and unpacks data in binary format (required for the Minecraft protocol). * **`json`:** Handles JSON data for the server status. * **`threading`:** Allows handling multiple client connections concurrently. * **`handle_client`:** This function handles the communication with a single Minecraft client. It receives the handshake, status request, and ping request, and sends back the appropriate responses. * **`start_server`:** Sets up the server socket and listens for incoming connections. **Important:** This is a *very* basic MCP server. It only handles the handshake, status request, and ping request. You'll need to implement the full Minecraft protocol to handle player login, chat messages, commands, and other game events. **2. Integrating with Spotify and Last.fm APIs** ```python import spotipy from spotipy.oauth2 import SpotifyClientCredentials import pylast # Spotify API Credentials (replace with your own) SPOTIPY_CLIENT_ID = "YOUR_SPOTIFY_CLIENT_ID" SPOTIPY_CLIENT_SECRET = "YOUR_SPOTIFY_CLIENT_SECRET" # Last.fm API Credentials (replace with your own) LASTFM_API_KEY = "YOUR_LASTFM_API_KEY" LASTFM_API_SECRET = "YOUR_LASTFM_API_SECRET" # Initialize Spotify client client_credentials_manager = SpotifyClientCredentials(client_id=SPOTIPY_CLIENT_ID, client_secret=SPOTIPY_CLIENT_SECRET) sp = spotipy.Spotify(client_credentials_manager=client_credentials_manager) # Initialize Last.fm network network = pylast.LastFMNetwork( api_key=LASTFM_API_KEY, api_secret=LASTFM_API_SECRET, username="YOUR_LASTFM_USERNAME" # Replace with a Last.fm username for testing ) def get_spotify_track_info(track_name, artist_name): """Searches Spotify for a track and returns track information.""" query = f"track:{track_name} artist:{artist_name}" results = sp.search(q=query, type='track', limit=1) if results['tracks']['items']: track = results['tracks']['items'][0] return { 'id': track['id'], 'name': track['name'], 'artist': track['artists'][0]['name'], 'album': track['album']['name'], 'popularity': track['popularity'], 'uri': track['uri'] } else: return None def get_lastfm_recent_tracks(username): """Gets the recent tracks played by a Last.fm user.""" user = network.get_user(username) recent_tracks = user.get_recent_tracks(limit=10) # Get the last 10 tracks tracks = [] for item in recent_tracks: track = item.track tracks.append({ 'artist': track.artist.name, 'title': track.title }) return tracks # Example usage if __name__ == "__main__": # Spotify Example track_info = get_spotify_track_info("Bohemian Rhapsody", "Queen") if track_info: print("Spotify Track Info:", track_info) else: print("Track not found on Spotify.") # Last.fm Example recent_tracks = get_lastfm_recent_tracks("YOUR_LASTFM_USERNAME") # Replace with your Last.fm username print("\nLast.fm Recent Tracks:") for track in recent_tracks: print(f"- {track['artist']} - {track['title']}") ``` **Explanation:** * **`spotipy`:** The Spotify API library. You'll need to install it: `pip install spotipy` * **`pylast`:** The Last.fm API library. You'll need to install it: `pip install pylast` * **API Credentials:** You *must* replace the placeholder credentials with your own API keys and secrets from the Spotify Developer Dashboard and the Last.fm API page. * **`get_spotify_track_info`:** Searches Spotify for a track and returns information like ID, name, artist, album, and popularity. * **`get_lastfm_recent_tracks`:** Gets the recent tracks played by a Last.fm user. **3. Handling Minecraft Commands** You'll need to integrate your music functionality with Minecraft commands. The specific way to do this depends on the MCP server library you're using. Here's a general outline: * **Command Registration:** Register a new command (e.g., `/musicrecommend`, `/mylistenhistory`). * **Command Parsing:** Parse the arguments provided with the command. * **Command Execution:** Execute the appropriate music-related function based on the command and arguments. * **Response to Player:** Send a message back to the player in the Minecraft chat window with the results (e.g., the recommended songs, their listening history). **Example (Conceptual - using a hypothetical MCP library):** ```python # Hypothetical MCP library functions def register_command(command_name, command_handler): # Registers a command with the server pass def send_message_to_player(player_name, message): # Sends a message to a player in the game pass def handle_music_recommend_command(player_name, args): # Get the player's Last.fm username (from a database or configuration) lastfm_username = get_player_lastfm_username(player_name) if not lastfm_username: send_message_to_player(player_name, "Please link your Last.fm account first.") return # Get the player's recent tracks from Last.fm recent_tracks = get_lastfm_recent_tracks(lastfm_username) # Generate recommendations (implementation details omitted) recommendations = generate_recommendations(recent_tracks) # Format the recommendations into a message message = "Recommended Songs:\n" for track in recommendations: message += f"- {track['artist']} - {track['title']}\n" # Send the recommendations to the player send_message_to_player(player_name, message) def get_player_lastfm_username(player_name): # This function would retrieve the Last.fm username associated with the player # from a database or configuration file. # For example: # player_data = database.get_player_data(player_name) # return player_data.get('lastfm_username') return "YOUR_LASTFM_USERNAME" # Replace with your Last.fm username for testing # Register the command register_command("musicrecommend", handle_music_recommend_command) ``` **4. Recommendation Algorithm** This is the most complex part. Here are some approaches: * **Collaborative Filtering:** Find users with similar listening habits and recommend songs they like that the current user hasn't heard. Requires a database of user listening data. * **Content-Based Filtering:** Analyze the characteristics of the songs the user likes (e.g., genre, tempo, mood) and recommend songs with similar characteristics. You can use the Spotify API to get track features. * **Hybrid Approach:** Combine collaborative and content-based filtering for better results. **Example (Simplified Content-Based Filtering):** ```python def generate_recommendations(recent_tracks): """Generates recommendations based on recent tracks.""" recommendations = [] for track in recent_tracks: # Get Spotify track info track_info = get_spotify_track_info(track['title'], track['artist']) if track_info: # Get similar artists from Spotify artist_id = sp.artist(track_info['uri'].split(':')[2])['artists'][0]['id'] related_artists = sp.artist_related_artists(artist_id)['artists'] # Get top tracks from related artists for artist in related_artists[:3]: # Limit to 3 related artists top_tracks = sp.artist_top_tracks(artist['id'])['tracks'][:2] # Limit to 2 tracks for top_track in top_tracks: recommendations.append({ 'artist': top_track['artists'][0]['name'], 'title': top_track['name'] }) return recommendations ``` **5. Database (Optional)** If you want to store user data (e.g., Last.fm usernames, listening history), you'll need a database. SQLite is a good choice for smaller projects. ```python import sqlite3 # Database setup conn = sqlite3.connect('music_server.db') cursor = conn.cursor() # Create a table to store player data cursor.execute(''' CREATE TABLE IF NOT EXISTS players ( player_name TEXT PRIMARY KEY, lastfm_username TEXT ) ''') conn.commit() def set_player_lastfm_username(player_name, lastfm_username): """Sets the Last.fm username for a player in the database.""" cursor.execute("INSERT OR REPLACE INTO players (player_name, lastfm_username) VALUES (?, ?)", (player_name, lastfm_username)) conn.commit() def get_player_lastfm_username(player_name): """Gets the Last.fm username for a player from the database.""" cursor.execute("SELECT lastfm_username FROM players WHERE player_name = ?", (player_name,)) result = cursor.fetchone() if result: return result[0] else: return None # Example usage if __name__ == "__main__": set_player_lastfm_username("Player123", "YOUR_LASTFM_USERNAME") # Replace with your Last.fm username username = get_player_lastfm_username("Player123") print(f"Last.fm username for Player123: {username}") conn.close() ``` **IV. Key Considerations and Challenges** * **Minecraft Protocol:** Understanding the Minecraft protocol is crucial for building a functional MCP server. It's complex and constantly evolving. * **API Rate Limits:** The Spotify and Last.fm APIs have rate limits. You need to handle these limits gracefully to avoid being blocked. Implement caching and throttling. * **User Authentication:** You'll need a way for players to link their Spotify/Last.fm accounts to their Minecraft accounts. This typically involves OAuth 2.0. * **Data Storage:** Choosing the right data storage solution (database, file system, etc.) depends on the scale of your project. * **Performance:** Generating recommendations can be computationally expensive. Optimize your code and consider using background threads or asynchronous tasks. * **Error Handling:** Implement robust error handling to deal with API errors, network issues, and invalid user input. * **Security:** Protect API keys and user data. Don't store sensitive information in plain text. * **Scalability:** If you plan to support a large number of users, you'll need to design your system to be scalable. **V. Next Steps** 1. **Choose an MCP Server Library:** Select a library that suits your needs and programming language preference. 2. **Implement the Basic MCP Server:** Get a basic MCP server running that can handle the handshake, status request, and ping request. 3. **Integrate with the Spotify and Last.fm APIs:** Implement the functions to retrieve user listening history and track information. 4. **Implement Command Handling:** Add the ability to register and handle Minecraft commands. 5. **Implement a Recommendation Algorithm:** Start with a simple algorithm and gradually improve it. 6. **Add a Database (Optional):** If you need to store user data, set up a database. 7. **Test Thoroughly:** Test your server with multiple Minecraft clients and different scenarios. **VI. Chinese Translation of Key Terms** Here's a translation of some key terms that might be helpful: * **MCP Server:** MCP服务器 (MCP fúwùqì) * **Spotify API:** Spotify API (Spotify API) (Note: API is often used directly in Chinese) * **Last.fm API:** Last.fm API (Last.fm API) * **Recommendation Algorithm:** 推荐算法 (tuījiàn suànfǎ) * **Minecraft Command:** Minecraft 命令 (Minecraft mìnglìng) * **Listening History:** 听歌历史 (tīng gē lìshǐ) * **API Key:** API 密钥 (API mìyào) * **Database:** 数据库 (shùjùkù) * **User Authentication:** 用户认证 (yònghù rènzhèng) * **Rate Limit:** 速率限制 (sùlǜ xiànzhì) or 频率限制 (pínlǜ xiànzhì) * **Collaborative Filtering:** 协同过滤 (xiétóng guòlǜ) * **Content-Based Filtering:** 基于内容的过滤 (jī yú nèiróng de guòlǜ) This is a substantial project, but by breaking it down into smaller steps and using the resources and guidance provided, you can make progress towards building your music recommendation MCP server. Good luck!

sbhikha

研究与数据
访问服务器

README

推荐服务器

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的服务器。

精选
Python
mixpanel

mixpanel

连接到您的 Mixpanel 数据。 从 Mixpanel 分析查询事件、留存和漏斗数据。

精选
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。

精选
Python
Nefino MCP Server

Nefino MCP Server

为大型语言模型提供访问德国可再生能源项目新闻和信息的能力,允许按地点、主题(太阳能、风能、氢能)和日期范围进行筛选。

官方
Python
Vectorize

Vectorize

将 MCP 服务器向量化以实现高级检索、私有深度研究、Anything-to-Markdown 文件提取和文本分块。

官方
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

一个服务器,通过 FastMCP 提供对 Mathematica 文档的访问,使用户能够从 Wolfram Mathematica 检索函数文档和列出软件包符号。

本地
Python
kb-mcp-server

kb-mcp-server

一个 MCP 服务器,旨在实现便携性、本地化、简易性和便利性,以支持对 txtai “all in one” 嵌入数据库进行基于语义/图的检索。任何 tar.gz 格式的 txtai 嵌入数据库都可以被加载。

本地
Python
Research MCP Server

Research MCP Server

这个服务器用作 MCP 服务器,与 Notion 交互以检索和创建调查数据,并与 Claude Desktop Client 集成以进行和审查调查。

本地
Python
Cryo MCP Server

Cryo MCP Server

一个API服务器,实现了模型补全协议(MCP),用于Cryo区块链数据提取,允许用户通过任何兼容MCP的客户端查询以太坊区块链数据。

本地
Python
Spotify-Agent