MCP-DBLP

MCP-DBLP

一个模型上下文协议服务器,提供对 DBLP 计算机科学书目数据库的访问,允许 AI 模型搜索出版物、处理引用并生成准确的 BibTeX 条目。

研究与数据
搜索
数据库
Python
访问服务器

Tools

get_author_publications

Retrieve publication details for a specific author with fuzzy matching. Arguments: - author_name (string, required): Full or partial author name (case-insensitive). - similarity_threshold (number, required): A float between 0 and 1 where 1.0 means an exact match. - max_results (number, optional): Maximum number of publications to return. Default is 20. - include_bibtex (boolean, optional): Whether to include BibTeX entries in the results. Default is false. Returns a dictionary with keys: name, publication_count, publications, and stats (which includes top venues, years, and types).

get_venue_info

Retrieve detailed information about a publication venue. Arguments: - venue_name (string, required): Venue name or abbreviation (e.g., 'ICLR' or full name). Returns a dictionary with fields: abbreviation, name, publisher, type, and category. Note: Some fields may be empty if DBLP does not provide the information.

search

Search DBLP for publications using a boolean query string. Arguments: - query (string, required): A query string that may include boolean operators 'and' and 'or' (case-insensitive). For example, 'Swin and Transformer'. Parentheses are not supported. - max_results (number, optional): Maximum number of publications to return. Default is 10. - year_from (number, optional): Lower bound for publication year. - year_to (number, optional): Upper bound for publication year. - venue_filter (string, optional): Case-insensitive substring filter for publication venues (e.g., 'iclr'). - include_bibtex (boolean, optional): Whether to include BibTeX entries in the results. Default is false. Returns a list of publication objects including title, authors, venue, year, type, doi, ee, and url.

calculate_statistics

Calculate statistics from a list of publication results. Arguments: - results (array, required): An array of publication objects, each with at least 'title', 'authors', 'venue', and 'year'. Returns a dictionary with: - total_publications: Total count. - time_range: Dictionary with 'min' and 'max' publication years. - top_authors: List of tuples (author, count) sorted by count. - top_venues: List of tuples (venue, count) sorted by count (empty venue is treated as '(empty)').

export_bibtex

Export BibTeX entries from a collection of HTML hyperlinks. Arguments: - links (string, required): HTML string containing one or more <a href=biburl>key</a> links. The href attribute should contain a URL to a BibTeX file, and the link text is used as the citation key. Example input with three links: "<a href=https://dblp.org/rec/journals/example1.bib>Smith2023</a> <a href=https://dblp.org/rec/conf/example2.bib>Jones2022</a> <a href=https://dblp.org/rec/journals/example3.bib>Brown2021</a>" Process: - For each link, the tool fetches the BibTeX content from the URL - The citation key in each BibTeX entry is replaced with the key from the link text - All entries are combined and saved to a .bib file with a timestamp filename Returns: - A message with the full path to the saved .bib file

fuzzy_title_search

Search DBLP for publications with fuzzy title matching. Arguments: - title (string, required): Full or partial title of the publication (case-insensitive). - similarity_threshold (number, required): A float between 0 and 1 where 1.0 means an exact match. - max_results (number, optional): Maximum number of publications to return. Default is 10. - year_from (number, optional): Lower bound for publication year. - year_to (number, optional): Upper bound for publication year. - venue_filter (string, optional): Case-insensitive substring filter for publication venues. - include_bibtex (boolean, optional): Whether to include BibTeX entries in the results. Default is false. Returns a list of publication objects sorted by title similarity score.

README

MCP-DBLP

MCP 兼容 许可证:MIT Python 版本

一个模型上下文协议 (MCP) 服务器,为大型语言模型提供对 DBLP 计算机科学书目数据库的访问。

<a href="https://glama.ai/mcp/servers/cm42scf3iv"> <img width="380" height="200" src="https://glama.ai/mcp/servers/cm42scf3iv/badge" alt="MCP-DBLP MCP 服务器" /> </a>


概述

MCP-DBLP 通过模型上下文协议将 DBLP(数字书目与图书馆项目)API 与 LLM 集成,使 AI 模型能够:

  • 搜索和检索 DBLP 数据库中的学术出版物
  • 处理引用并生成 BibTeX 条目
  • 对出版物标题和作者姓名执行模糊匹配
  • 提取和格式化书目信息
  • 处理文档中嵌入的参考文献
  • 直接 BibTeX 导出,绕过 LLM 处理,以实现最大准确性

特性

  • 具有布尔查询的全面搜索功能
  • 模糊标题和作者姓名匹配
  • 直接从 DBLP 检索 BibTeX 条目
  • 按年份和会议过滤出版物
  • 出版物数据的统计分析
  • 直接 BibTeX 导出功能,绕过 LLM 处理,以实现最大准确性

可用工具

工具名称 描述
search 使用布尔查询在 DBLP 中搜索出版物
fuzzy_title_search 使用模糊标题匹配搜索出版物
get_author_publications 检索特定作者的出版物
get_venue_info 获取有关出版物会议的详细信息
calculate_statistics 从出版物结果生成统计信息
export_bibtex 直接从 DBLP 将 BibTeX 条目导出到文件

反馈

通过此表格向作者提供反馈。

系统要求

  • Python 3.11+
  • uv

安装

  1. 安装 MCP 兼容的客户端(例如,Claude Desktop app

  2. 安装 MCP-DBLP:

    git clone https://github.com/username/mcp-dblp.git
    cd mcp-dblp
    uv venv
    source .venv/bin/activate 
    uv pip install -e .  
    
  3. 创建配置文件:

    对于 macOS/Linux:

   ~/Library/Application/Support/Claude/claude_desktop_config.json

对于 Windows:

   %APPDATA%\Claude\claude_desktop_config.json

添加以下内容:

   {
     "mcpServers": {
       "mcp-dblp": {
         "command": "uv",
         "args": [
           "--directory",
           "/absolute/path/to/mcp-dblp/",
           "run",
           "mcp-dblp",
           "--exportdir",
           "/absolute/path/to/bibtex/export/folder/"
         ]
       }
     }
   }

Windows: C:\\absolute\\path\\to\\mcp-dblp


提示

包含一个指令提示,应与包含引用的文本一起使用。在 Claude Desktop 上,指令提示可通过电源插头图标获得。

工具详情

search

使用布尔查询字符串在 DBLP 中搜索出版物。

参数:

  • query (字符串,必需):一个查询字符串,可以包含布尔运算符 'and' 和 'or'(不区分大小写)
  • max_results (数字,可选):要返回的最大出版物数量。默认为 10
  • year_from (数字,可选):出版年份的下限
  • year_to (数字,可选):出版年份的上限
  • venue_filter (字符串,可选):出版物会议的不区分大小写的子字符串过滤器(例如,'iclr')
  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认为 false

fuzzy_title_search

使用模糊标题匹配搜索 DBLP 中的出版物。

参数:

  • title (字符串,必需):出版物的完整或部分标题(不区分大小写)
  • similarity_threshold (数字,必需):介于 0 和 1 之间的浮点数,其中 1.0 表示完全匹配
  • max_results (数字,可选):要返回的最大出版物数量。默认为 10
  • year_from (数字,可选):出版年份的下限
  • year_to (数字,可选):出版年份的上限
  • venue_filter (字符串,可选):出版物会议的不区分大小写的子字符串过滤器
  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认为 false

get_author_publications

检索特定作者的出版物详细信息,并进行模糊匹配。

参数:

  • author_name (字符串,必需):作者的完整或部分姓名(不区分大小写)
  • similarity_threshold (数字,必需):介于 0 和 1 之间的浮点数,其中 1.0 表示完全匹配
  • max_results (数字,可选):要返回的最大出版物数量。默认为 20
  • include_bibtex (布尔值,可选):是否在结果中包含 BibTeX 条目。默认为 false

get_venue_info

检索有关出版物会议的详细信息。

参数:

  • venue_name (字符串,必需):会议名称或缩写(例如,'ICLR' 或全名)

calculate_statistics

从出版物结果列表中计算统计信息。

参数:

  • results (数组,必需):出版物对象数组,每个对象至少包含 'title'、'authors'、'venue' 和 'year'

export_bibtex

直接从 DBLP 将 BibTeX 条目导出到本地文件。

参数:

  • links
    

    (字符串,必需):包含一个或多个 <a href=biburl>key</a> 链接的 HTML 字符串

    • 示例:"<a href=https://dblp.org/rec/journals/example.bib>Smith2023</a>"

行为:

  • 对于每个链接,BibTeX 条目直接从 DBLP 获取
  • 仅引用键被替换为链接文本中指定的键
  • 所有条目都保存到 --exportdir 指定的文件夹中的带时间戳的 .bib 文件中
  • 返回保存文件的完整路径

重要提示: BibTeX 条目直接从 DBLP 获取,具有 10 秒的超时保护,并且不会由 LLM 处理、修改或虚构。这确保了书目数据的最大准确性和可信度。仅修改指定的引用键。如果请求超时,则输出中包含一条错误消息。


示例

输入文本:

Our exploration focuses on two types of explanation problems, abductive and contrastive, in local and global contexts (Marques-Silva 2023). Abductive explanations (Ignatiev, Narodytska, and Marques-Silva 2019), corresponding to prime-implicant explanations (Shih, Choi, and Darwiche 2018) and sufficient reason explanations (Darwiche and Ji 2022), clarify specific decision-making instances, while contrastive explanations (Miller 2019; Ignatiev et al. 2020), corresponding to necessary reason explanations (Darwiche and Ji 2022), make explicit the reasons behind the non-selection of alternatives. Conversely, global explanations (Ribeiro, Singh, and Guestrin 2016; Ignatiev, Narodytska, and Marques-Silva 2019) aim to unravel models' decision patterns across various inputs.

输出文本:

Our exploration focuses on two types of explanation problems, abductive and contrastive, in local and global contexts \cite{MarquesSilvaI23}. Abductive explanations \cite{IgnatievNM19}, corresponding to prime-implicant explanations \cite{ShihCD18} and sufficient reason explanations \cite{DarwicheJ22}, clarify specific decision-making instances, while contrastive explanations \cite{Miller19}; \cite{IgnatievNA020}, corresponding to necessary reason explanations \cite{DarwicheJ22}, make explicit the reasons behind the non-selection of alternatives. Conversely, global explanations \cite{Ribeiro0G16}; \cite{IgnatievNM19} aim to unravel models' decision patterns across various inputs.

输出 Bibtex

All references have been successfully exported to a BibTeX file at: /absolute/path/to/bibtex/20250305_231431.bib

@article{MarquesSilvaI23,
 author       = {Jo{\~{a}}o Marques{-}Silva and
                 Alexey Ignatiev},
 title        = {No silver bullet: interpretable {ML} models must be explained},
 journal      = {Frontiers Artif. Intell.},
 volume       = {6},
 year         = {2023},
 url          = {https://doi.org/10.3389/frai.2023.1128212},
 doi          = {10.3389/FRAI.2023.1128212},
 timestamp    = {Tue, 07 May 2024 20:23:47 +0200},
 biburl       = {https://dblp.org/rec/journals/frai/MarquesSilvaI23.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{IgnatievNM19,
 author       = {Alexey Ignatiev and
                 Nina Narodytska and
                 Jo{\~{a}}o Marques{-}Silva},
 title        = {Abduction-Based Explanations for Machine Learning Models},
 booktitle    = {The Thirty-Third {AAAI} Conference on Artificial Intelligence, {AAAI}
                 2019, The Thirty-First Innovative Applications of Artificial Intelligence
                 Conference, {IAAI} 2019, The Ninth {AAAI} Symposium on Educational
                 Advances in Artificial Intelligence, {EAAI} 2019, Honolulu, Hawaii,
                 USA, January 27 - February 1, 2019},
 pages        = {1511--1519},
 publisher    = {{AAAI} Press},
 year         = {2019},
 url          = {https://doi.org/10.1609/aaai.v33i01.33011511},
 doi          = {10.1609/AAAI.V33I01.33011511},
 timestamp    = {Mon, 04 Sep 2023 12:29:24 +0200},
 biburl       = {https://dblp.org/rec/conf/aaai/IgnatievNM19.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{ShihCD18,
 author       = {Andy Shih and
                 Arthur Choi and
                 Adnan Darwiche},
 editor       = {J{\'{e}}r{\^{o}}me Lang},
 title        = {A Symbolic Approach to Explaining Bayesian Network Classifiers},
 booktitle    = {Proceedings of the Twenty-Seventh International Joint Conference on
                 Artificial Intelligence, {IJCAI} 2018, July 13-19, 2018, Stockholm,
                 Sweden},
 pages        = {5103--5111},
 publisher    = {ijcai.org},
 year         = {2018},
 url          = {https://doi.org/10.24963/ijcai.2018/708},
 doi          = {10.24963/IJCAI.2018/708},
 timestamp    = {Tue, 20 Aug 2019 16:19:08 +0200},
 biburl       = {https://dblp.org/rec/conf/ijcai/ShihCD18.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{DarwicheJ22,
 author       = {Adnan Darwiche and
                 Chunxi Ji},
 title        = {On the Computation of Necessary and Sufficient Explanations},
 booktitle    = {Thirty-Sixth {AAAI} Conference on Artificial Intelligence, {AAAI}
                 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
                 Intelligence, {IAAI} 2022, The Twelveth Symposium on Educational Advances
                 in Artificial Intelligence, {EAAI} 2022 Virtual Event, February 22
                 - March 1, 2022},
 pages        = {5582--5591},
 publisher    = {{AAAI} Press},
 year         = {2022},
 url          = {https://doi.org/10.1609/aaai.v36i5.20498},
 doi          = {10.1609/AAAI.V36I5.20498},
 timestamp    = {Mon, 04 Sep 2023 16:50:24 +0200},
 biburl       = {https://dblp.org/rec/conf/aaai/DarwicheJ22.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@article{Miller19,
 author       = {Tim Miller},
 title        = {Explanation in artificial intelligence: Insights from the social sciences},
 journal      = {Artif. Intell.},
 volume       = {267},
 pages        = {1--38},
 year         = {2019},
 url          = {https://doi.org/10.1016/j.artint.2018.07.007},
 doi          = {10.1016/J.ARTINT.2018.07.007},
 timestamp    = {Thu, 25 May 2023 12:52:41 +0200},
 biburl       = {https://dblp.org/rec/journals/ai/Miller19.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{IgnatievNA020,
 author       = {Alexey Ignatiev and
                 Nina Narodytska and
                 Nicholas Asher and
                 Jo{\~{a}}o Marques{-}Silva},
 editor       = {Matteo Baldoni and
                 Stefania Bandini},
 title        = {From Contrastive to Abductive Explanations and Back Again},
 booktitle    = {AIxIA 2020 - Advances in Artificial Intelligence - XIXth International
                 Conference of the Italian Association for Artificial Intelligence,
                 Virtual Event, November 25-27, 2020, Revised Selected Papers},
 series       = {Lecture Notes in Computer Science},
 volume       = {12414},
 pages        = {335--355},
 publisher    = {Springer},
 year         = {2020},
 url          = {https://doi.org/10.1007/978-3-030-77091-4\_21},
 doi          = {10.1007/978-3-030-77091-4\_21},
 timestamp    = {Tue, 15 Jun 2021 17:23:54 +0200},
 biburl       = {https://dblp.org/rec/conf/aiia/IgnatievNA020.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

@inproceedings{Ribeiro0G16,
 author       = {Marco T{\'{u}}lio Ribeiro and
                 Sameer Singh and
                 Carlos Guestrin},
 editor       = {Balaji Krishnapuram and
                 Mohak Shah and
                 Alexander J. Smola and
                 Charu C. Aggarwal and
                 Dou Shen and
                 Rajeev Rastogi},
 title        = {"Why Should {I} Trust You?": Explaining the Predictions of Any Classifier},
 booktitle    = {Proceedings of the 22nd {ACM} {SIGKDD} International Conference on
                 Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
                 13-17, 2016},
 pages        = {1135--1144},
 publisher    = {{ACM}},
 year         = {2016},
 url          = {https://doi.org/10.1145/2939672.2939778},
 doi          = {10.1145/2939672.2939778},
 timestamp    = {Fri, 25 Dec 2020 01:14:16 +0100},
 biburl       = {https://dblp.org/rec/conf/kdd/Ribeiro0G16.bib},
 bibsource    = {dblp computer science bibliography, https://dblp.org}
}

免责声明

此 MCP-DBLP 处于原型阶段,应谨慎使用。 鼓励用户进行实验,但在关键环境中的任何使用均由其自行承担风险。


许可证

该项目已获得 MIT 许可证的许可 - 有关详细信息,请参阅 LICENSE 文件。

推荐服务器

Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
DuckDuckGo MCP Server

DuckDuckGo MCP Server

一个模型上下文协议 (MCP) 服务器,通过 DuckDuckGo 提供网页搜索功能,并具有内容获取和解析的附加功能。

精选
Python
Supabase MCP Server

Supabase MCP Server

一个模型上下文协议(MCP)服务器,它提供对 Supabase 管理 API 的编程访问。该服务器允许 AI 模型和其他客户端通过标准化的接口来管理 Supabase 项目和组织。

精选
JavaScript
YouTube Transcript MCP Server

YouTube Transcript MCP Server

这个服务器用于获取指定 YouTube 视频 URL 的字幕,从而可以与 Goose CLI 或 Goose Desktop 集成,进行字幕提取和处理。

精选
Python
serper-search-scrape-mcp-server

serper-search-scrape-mcp-server

这个 Serper MCP 服务器支持搜索和网页抓取,并且支持 Serper API 引入的所有最新参数,例如位置信息。

精选
TypeScript
The Verge News MCP Server

The Verge News MCP Server

提供从The Verge的RSS feed获取和搜索新闻的工具,允许用户获取今日新闻、检索过去一周的随机文章,以及在最近的Verge内容中搜索特定关键词。

精选
TypeScript
Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 CoinCap API 提供全面的加密货币分析。该服务器通过一个易于使用的界面提供实时价格数据、市场分析和历史趋势。 (Alternative, slightly more formal and technical translation): 一个模型上下文协议 (MCP) 服务器,利用 CoinCap API 提供全面的加密货币分析服务。该服务器通过用户友好的界面,提供实时价格数据、市场分析以及历史趋势数据。

精选
TypeScript
MCP PubMed Search

MCP PubMed Search

用于搜索 PubMed 的服务器(PubMed 是一个免费的在线数据库,用户可以在其中搜索生物医学和生命科学文献)。 我是在 MCP 发布当天创建的,但当时正在度假。 我看到有人在您的数据库中发布了类似的服务器,但还是决定发布我的。

精选
Python
MCP DuckDB Knowledge Graph Memory Server

MCP DuckDB Knowledge Graph Memory Server

一个为 Claude 设计的记忆服务器,它使用 DuckDB 存储和检索知识图谱数据,从而增强了对话的性能和查询能力,并能持久保存用户信息。

精选
TypeScript