
Medical Report Analyzer
Contribute to TanvirHafiz/Medical-report-analyzer development by creating an account on GitHub.
README
Medical Report Analyzer
A web application that provides medical report analysis, symptoms analysis, and medicine information using AI. The application supports both English and Bengali (বাংলা) languages.
Features
-
Medical Report Analysis
- Upload medical reports (JPG, PDF)
- Extract and analyze test results
- Get health insights and suggestions
-
Symptoms Analysis
- Describe symptoms in detail
- Get potential conditions and urgency level
- Receive immediate steps and precautions
-
Medicine Information
- Get detailed medicine analysis
- View usage, side effects, and precautions
- Personalized information based on age and gender
- Dosage schedule analysis
-
Bilingual Support
- Toggle between English and Bengali
- Instant translation of analysis results
Technologies Used
- Python/Flask (Backend)
- JavaScript/HTML/CSS (Frontend)
- Tailwind CSS (Styling)
- Ollama with deepseek-r1:14b model (AI Analysis)
- Tesseract OCR (Text Extraction)
- Google Translate API (Translation)
Prerequisites
- Python 3.8 or higher
- Tesseract OCR installed
- Ollama with deepseek-r1:14b model
Installation
- Clone the repository:
git clone <repository-url>
cd medical-report-analyzer
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
-
Install Tesseract OCR:
- Windows: Download and install from Tesseract GitHub
- Linux:
sudo apt-get install tesseract-ocr
- Mac:
brew install tesseract
-
Install and run Ollama:
- Follow instructions at Ollama
- Pull the model:
ollama pull deepseek-r1:14b
Configuration
- Set Tesseract path in
app.py
:
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # Adjust path as needed
- Ensure Ollama is running with the deepseek-r1:14b model:
ollama run deepseek-r1:14b
Running the Application
- Start the Flask server:
python app.py
- Open a web browser and navigate to:
http://localhost:5000
Usage
-
Analyzing Medical Reports
- Click "Report Analysis" tab
- Upload JPG or PDF file
- View analysis results
- Optionally translate to Bengali
-
Analyzing Symptoms
- Click "Symptoms Analysis" tab
- Describe symptoms in detail
- Click "Analyze Symptoms"
- View analysis and recommendations
-
Getting Medicine Information
- Click "Medicine Info" tab
- Enter patient age and gender
- Input medicine name and dosage schedule
- Click "Analyze Medicine"
- View detailed medicine analysis
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mult-fetch-mcp-server
一个多功能的、符合 MCP 规范的网页内容抓取工具,支持多种模式(浏览器/Node)、格式(HTML/JSON/Markdown/文本)和智能代理检测,并提供双语界面(英语/中文)。
AIO-MCP Server
🚀 集成了 AI 搜索、RAG 和多服务(GitLab/Jira/Confluence/YouTube)的一体化 MCP 服务器,旨在增强 AI 驱动的开发工作流程。来自 Folk。
Knowledge Graph Memory Server
为 Claude 实现持久性记忆,使用本地知识图谱,允许 AI 记住用户的信息,并可在自定义位置存储,跨对话保持记忆。
Hyperbrowser
欢迎来到 Hyperbrowser,人工智能的互联网。Hyperbrowser 是下一代平台,旨在增强人工智能代理的能力,并实现轻松、可扩展的浏览器自动化。它专为人工智能开发者打造,消除了本地基础设施和性能瓶颈带来的麻烦,让您能够:
https://github.com/Streen9/react-mcp
react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。

any-chat-completions-mcp
将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。
Exa MCP Server
一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。