glassBead-thinks

glassBead-thinks

Waldzell AI's monorepo of MCP servers. Use in Claude Desktop, Cline, Roo Code, and more! - waldzellai/waldzell-mcp

高级AI推理
访问服务器

README

@waldzellai/mcp-servers

smithery badge

A collection of Model Context Protocol (MCP) servers providing various capabilities for AI assistants.

Packages

@waldzellai/clear-thought

An MCP server providing advanced problem-solving capabilities through:

@waldzellai/stochasticthinking

An MCP server extending sequential thinking with advanced stochastic algorithms for better decision-making:

  • Markov Decision Processes (MDPs) for optimizing long-term decision sequences
  • Monte Carlo Tree Search (MCTS) for exploring large decision spaces
  • Multi-Armed Bandit Models for balancing exploration vs exploitation
  • Bayesian Optimization for decisions under uncertainty
  • Hidden Markov Models (HMMs) for inferring latent states

Helps AI assistants break out of local minima by considering multiple possible futures and strategically exploring alternative approaches.

Development

This is a monorepo using npm workspaces. To get started:

# Install dependencies for all packages
npm install

# Build all packages
npm run build

# Clean all packages
npm run clean

# Test all packages
npm run test

Package Management

Each package in the packages/ directory is published independently to npm under the @waldzellai organization scope.

To create a new package:

  1. Create a new directory under packages/
  2. Initialize with required files (package.json, src/, etc.)
  3. Add to workspaces in root package.json if needed

License

MIT

Understanding MCP Model Enhancement

Less Technical Answer

Here's a reframed explanation using USB/hardware analogies:

Model Enhancement as USB Add-Ons

Think of the core AI model as a basic desktop computer. Model enhancement through MCP is like adding specialized USB devices to expand its capabilities. The Sequential Thinking server acts like a plug-in math coprocessor chip (like old 8087 FPU chips) that boosts the computer's number-crunching abilities.

How USB-Style Enhancement Works:

Basic Setup
  • Desktop (Base AI Model): Handles general tasks
  • USB Port (MCP Interface): Standard connection point
  • USB Stick (MCP Server): Contains special tools (like a "math helper" program)
Plug-and-Play Mechanics
  1. Driver Installation (Server Registration)

    # Simplified version of USB "driver setup"
    def install_mcp_server(usb_port, server_files):
        usb_port.register_tools(server_files['tools'])
        usb_port.load_drivers(server_files['drivers'])
    
    • Server provides "driver" APIs the desktop understands
    • Tools get added to the system tray (available services)
  2. Tool Execution (Using the USB)

    • Desktop sends request like a keyboard input:
      Press F1 to use math helper
    • USB processes request using its dedicated hardware:
    def math_helper(input):
        # Dedicated circuit on USB processes this
        return calculation_results
    
    • Results return through USB cable (MCP protocol)
Real-World Workflow
  1. User asks AI to solve complex equation
  2. Desktop (base AI) checks its "USB ports":
    • if problem == "hard_math":
    • use USB_MATH_SERVER
  3. USB math server returns:
    • Step-by-step solution
    • Confidence score (like error margins)
    • Alternative approaches (different "calculation modes")

Why This Analogy Works

  • Hot-swapping: Change USB tools while system runs
  • Specialization: Different USBs for math/code/art
  • Resource Limits: Complex work offloaded to USB hardware
  • Standard Interface: All USBs use same port shape (MCP protocol)

Just like you might use a USB security dongle for protected software, MCP lets AI models temporarily "borrow" specialized brains for tough problems, then return to normal operation.

More Technical Answer

Model enhancement in the context of the Model Context Protocol (MCP) refers to improving AI capabilities through structured integration of external reasoning tools and data sources. The Sequential Thinking MCP Server demonstrates this by adding dynamic problem-solving layers to foundational models like Claude 3.5 Sonnet.

Mechanics of Reasoning Component Delivery:

Server-Side Implementation

MCP servers expose reasoning components through:

  1. Tool registration - Servers define executable functions with input/output schemas:
// Java server configuration example
syncServer.addTool(syncToolRegistration);
syncServer.addResource(syncResourceRegistration);
  1. Capability negotiation - During initialization, servers advertise available components through protocol handshakes:
  • Protocol version compatibility checks
  • Resource availability declarations
  • Supported operation listings
  1. Request handling - Servers process JSON-RPC messages containing:
  • Component identifiers
  • Parameter payloads
  • Execution context metadata

Client-Side Interaction

MCP clients discover and utilize reasoning components through:

  1. Component discovery via list_tools requests:
# Python client example
response = await self.session.list_tools()
tools = response.tools
  1. Dynamic invocation using standardized message formats:
  • Request messages specify target component and parameters
  • Notifications stream intermediate results
  • Errors propagate with structured codes
  1. Context maintenance through session persistence:
  • Conversation history tracking
  • Resource handle caching
  • Partial result aggregation

Protocol Execution Flow

The component delivery process follows strict sequencing:

  1. Connection establishment

    • TCP/HTTP handshake
    • Capability exchange (server ↔ client)
    • Security context negotiation
  2. Component resolution

    • Client selects appropriate tool from server registry
    • Parameter validation against schema
    • Resource binding (e.g., database connections)
  3. Execution lifecycle

    • Request: Client → Server (JSON-RPC)
    • Processing: Server → Tool runtime
    • Response: Server → Client (structured JSON)

Modern implementations like Rhino's Grasshopper integration demonstrate real-world mechanics:

# Rhino MCP server command processing
Rhino.RhinoApp.InvokeOnUiThread(lambda: process_command(cmd))
response = get_response() # Capture Grasshopper outputs
writer.WriteLine(response) # Return structured results

This architecture enables dynamic enhancement of AI capabilities through:

  • Pluggable reasoning modules (add/remove without system restart)
  • Cross-platform interoperability (Python ↔ Java ↔ C# components)
  • Progressive disclosure of complex functionality
  • Versioned capabilities for backward compatibility

The protocol's transport-agnostic design ensures consistent component delivery across:

  • Local stdio processes
  • HTTP/SSE cloud endpoints
  • Custom binary protocols
  • Hybrid edge computing setups

推荐服务器

https://github.com/Streen9/react-mcp

https://github.com/Streen9/react-mcp

react-mcp 与 Claude Desktop 集成,能够根据用户提示创建和修改 React 应用程序。

精选
本地
any-chat-completions-mcp

any-chat-completions-mcp

将 Claude 与任何 OpenAI SDK 兼容的聊天完成 API 集成 - OpenAI、Perplexity、Groq、xAI、PyroPrompts 等。

精选
Exa MCP Server

Exa MCP Server

一个模型上下文协议服务器,它使像 Claude 这样的人工智能助手能够以安全和受控的方式,使用 Exa AI 搜索 API 执行实时网络搜索。

精选
MySQL MCP Server

MySQL MCP Server

允许人工智能助手通过受控界面列出表格、读取数据和执行 SQL 查询,从而使数据库探索和分析更安全、更有条理。

精选
mcp-codex-keeper

mcp-codex-keeper

作为开发知识的守护者,为 AI 助手提供精心策划的最新文档和最佳实践访问权限。

精选
Perplexity Deep Research MCP

Perplexity Deep Research MCP

一个服务器,它允许 AI 助手使用 Perplexity 的 sonar-deep-research 模型进行网络搜索,并提供引用支持。

精选
OpenRouter MCP Server

OpenRouter MCP Server

提供与 OpenRouter.ai 的集成,允许通过统一的界面访问各种 AI 模型。

精选
Search1API MCP Server

Search1API MCP Server

一个模型上下文协议 (MCP) 服务器,它使用 Search1API 提供搜索和抓取功能。

精选
Jina AI

Jina AI

Contribute to JoeBuildsStuff/mcp-jina-ai development by creating an account on GitHub.

精选
RAT MCP Server (Retrieval Augmented Thinking)

RAT MCP Server (Retrieval Augmented Thinking)

🧠 MCP 服务器,实现了 RAT(检索增强思维)—— 结合了 DeepSeek 的推理能力和 GPT-4/Claude/Mistral 的回复,并在交互之间保持对话上下文。

本地