
Weaviate MCP Server
A ready-to-use MCP (Model Context Protocol) server template for extending Cursor IDE with custom tools. Deploy your own server to Heroku with one click, create custom commands, and enhance your Cursor IDE experience. Perfect for developers who want to add their own tools and commands to Cursor IDE without complex setup. - kirill-markin/example-mcp-server
README
MCP Server Template for Cursor IDE
A simple template for creating custom tools for Cursor IDE using Model Context Protocol (MCP). Create your own repository from this template, modify the tools, and connect them to your Cursor IDE.
Quick Start
-
Click "Deploy to Heroku" button
-
After deployment, configure Cursor:
- Open Cursor Settings → Features
- Add new MCP server
- Use your Heroku URL with
/sse
path (e.g.,https://<your-app-name>.herokuapp.com/sse
)
-
Test your agent's mood in Cursor:
- Ask your agent "Please ask about our server mood and let me know how it is."
- The server will respond with a cheerful message and a heart ❤️
Alternative Setup Methods
You can run the server in three ways: using Docker, traditional Python setup, or directly in Cursor IDE.
Docker Setup
The project includes Docker support for easy deployment:
- Initial setup:
Clone the repository
git clone https://github.com/kirill-markin/weaviate-mcp-server.git cd weaviate-mcp-server
Create environment file
cp .env.example .env
- Build and run using Docker Compose:
Build and start the server
docker compose up --build -d
View logs
docker compose logs -f
Check server status
docker compose ps
Stop the server
docker compose down
-
The server will be available at:
- SSE endpoint: http://localhost:8000/sse
-
Quick test:
Test the server endpoint
curl -i http://localhost:8000/sse
- Connect to Cursor IDE:
- Open Cursor Settings → Features
- Add new MCP server
- Type: Select "sse"
- URL: Enter
http://localhost:8000/sse
Traditional Setup
First, install the uv package manager:
Install uv on macOS
brew install uv
Or install via pip (any OS)
pip install uv
Start the server using either stdio (default) or SSE transport:
Install the package with development dependencies
uv pip install -e ".[dev]"
Using stdio transport (default)
uv run mcp-simple-tool
Using SSE transport on custom port
uv run mcp-simple-tool --transport sse --port 8000
Run tests
uv run pytest -v
After installation, you can connect the server directly to Cursor IDE:
- Right-click on the
cursor-run-mcp-server.sh
file in Cursor - Select "Copy Path" to copy the absolute path
- Open Cursor Settings (gear icon)
- Navigate to Features tab
- Scroll down to "MCP Servers"
- Click "Add new MCP server"
- Fill in the form:
- Name: Choose any name (e.g., "my-mcp-server-1")
- Type: Select "stdio" (not "sse" because we run the server locally)
- Command: Paste the absolute path to
cursor-run-mcp-server.sh
that you copied earlier. For example:/Users/kirillmarkin/weaviate-mcp-server/cursor-run-mcp-server.sh
Environment Variables
Available environment variables (can be set in .env
):
MCP_SERVER_PORT
(default: 8000) - Port to run the server onMCP_SERVER_HOST
(default: 0.0.0.0) - Host to bind the server toDEBUG
(default: false) - Enable debug modeMCP_USER_AGENT
- Custom User-Agent for website fetching
Additional options
Installing via Smithery
To install MCP Server Template for Cursor IDE for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @kirill-markin/example-mcp-server --client claude
Glama server review
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Playwright MCP Server
提供一个利用模型上下文协议的服务器,以实现类人浏览器的自动化,该服务器使用 Playwright,允许控制浏览器行为,例如导航、元素交互和滚动。
@kazuph/mcp-fetch
用于获取网页内容和处理图像的模型上下文协议服务器。这使得 Claude Desktop(或任何 MCP 客户端)能够适当地获取网页内容和处理图像。
DuckDuckGo MCP Server
一个模型上下文协议 (MCP) 服务器,通过 DuckDuckGo 提供网页搜索功能,并具有内容获取和解析的附加功能。
YouTube Transcript MCP Server
这个服务器用于获取指定 YouTube 视频 URL 的字幕,从而可以与 Goose CLI 或 Goose Desktop 集成,进行字幕提取和处理。
serper-search-scrape-mcp-server
这个 Serper MCP 服务器支持搜索和网页抓取,并且支持 Serper API 引入的所有最新参数,例如位置信息。
The Verge News MCP Server
提供从The Verge的RSS feed获取和搜索新闻的工具,允许用户获取今日新闻、检索过去一周的随机文章,以及在最近的Verge内容中搜索特定关键词。
Tavily MCP Server
使用 Tavily 的搜索 API 提供 AI 驱动的网络搜索功能,使 LLM 能够执行复杂的网络搜索、获得问题的直接答案以及搜索最近的新闻文章。
mcp-pinterest
用于图像搜索和信息检索的 Pinterest 模型上下文协议 (MCP) 服务器

Brev
在云端运行、构建、训练和部署机器学习模型。