发现优秀的 MCP 服务器

通过 MCP 服务器扩展您的代理能力,拥有 10,038 个能力。

云平台118
contentful-mcp

contentful-mcp

在你的 Contentful Space 中更新、创建、删除内容、内容模型和资源。

精选
TypeScript
Supabase MCP Server

Supabase MCP Server

一个模型上下文协议(MCP)服务器,它提供对 Supabase 管理 API 的编程访问。该服务器允许 AI 模型和其他客户端通过标准化的接口来管理 Supabase 项目和组织。

精选
JavaScript
Azure MCP Server

Azure MCP Server

通过 Claude Desktop 实现与 Azure 服务的自然语言交互,支持资源管理、订阅处理和租户选择,并提供安全身份验证。

官方
本地
TypeScript
Settlemint

Settlemint

利用 SettleMint 的模型上下文协议服务器,无缝地与企业区块链基础设施交互。通过人工智能驱动的助手构建、部署和管理智能合约,从而简化您的区块链开发工作流程,实现最高的效率。

官方
本地
TypeScript
Brev

Brev

在云端运行、构建、训练和部署机器学习模型。

官方
本地
Python
Story Protocol SDK MCP

Story Protocol SDK MCP

这个服务器提供 MCP(模型上下文协议)工具,用于与 Story 的 Python SDK 交互。 功能: * 获取许可条款 * 使用 PIL 条款铸造和注册 IP 资产 * 铸造许可代币 * 向钱包发送 $IP * 通过 Pinata [外部] 上传图像到 ipfs * 通过 Pinata [外部] 上传 IP 和 NFT 元数据

官方
Python
Tembo MCP Server

Tembo MCP Server

一个 MCP 服务器,它使 Claude 能够与 Tembo Cloud 平台 API 交互,从而允许用户通过自然语言管理 Tembo Cloud 资源。

官方
TypeScript
Workers MCP

Workers MCP

一个连接 Claude Desktop 和其他 MCP 客户端到 Cloudflare Workers 的软件包,从而可以通过模型上下文协议,使用自然语言访问自定义功能。

官方
TypeScript
Appwrite MCP Server

Appwrite MCP Server

一个模型上下文协议服务器,允许 AI 助手与 Appwrite 的 API 交互,从而提供管理 Appwrite 项目中数据库、用户、函数、团队和其他资源的工具。

官方
Python
MCP2Lambda

MCP2Lambda

通过 MCP 协议,人工智能模型能够与 AWS Lambda 函数交互,从而在安全的环境中访问私有资源、实时数据和自定义计算。

官方
Python
mcp-server-cloudflare

mcp-server-cloudflare

允许您使用 Claude Desktop 或任何 MCP 客户端,通过自然语言在您的 Cloudflare 帐户上完成任务。

官方
TypeScript
Wanaku MCP Server

Wanaku MCP Server

Wanaku MCP 路由器连接自主 AI 代理和您的企业系统。Wanaku 利用成熟的集成技术(如 Apache Camel)来设置和管理成百上千个集成。

官方
mcp-k8s-go

mcp-k8s-go

这个项目旨在成为一个连接到 Kubernetes 的 MCP 服务器,同时也是一个用于为 Kubernetes 中任何自定义资源构建更多服务器的库。

本地
Go
AWS MCP Server

AWS MCP Server

一个模型上下文协议服务器实现,使 Claude 能够通过自然语言命令在 S3 和 DynamoDB 服务上执行 AWS 操作。

本地
Python
Waldur MCP Server

Waldur MCP Server

Waldur MCP 服务器通过 MCP 促进与 Waldur 实例的交互,从而允许通过自定义 API 访问实现服务的无缝集成和管理。

本地
Python
Choose MCP Server

Choose MCP Server

一个用于 Claude Desktop 的 MCP 服务器,允许用户通过在 Claude Desktop 配置中设置项目 ID 和数据集,来查询选定的 Google Cloud 数据集中的数据。 Or, a slightly more technical translation: 一个为 Claude Desktop 设计的 MCP 服务器,它允许用户通过在 Claude Desktop 的配置中指定项目 ID 和数据集,来查询来自选定的 Google Cloud 数据集的数据。

本地
Python
MCP Server Modal

MCP Server Modal

一个 MCP 服务器,允许用户直接从 Claude 将 Python 脚本部署到 Modal,并提供已部署应用程序的链接,以便与他人分享。

本地
Python
kubernetes-mcp-server

kubernetes-mcp-server

一个强大且灵活的 Kubernetes MCP 服务器实现,支持 OpenShift。

本地
Go
aws-mcp

aws-mcp

一个模型上下文协议(MCP)服务器,使像 Claude 这样的 AI 助手能够与您的 AWS 环境交互。 这允许在对话期间使用自然语言查询和管理您的 AWS 资源。 可以把它想象成一个更好的 Amazon Q 替代方案。

本地
TypeScript
Keboola Explorer MCP Server

Keboola Explorer MCP Server

Contribute to keboola/keboola-mcp-server development by creating an account on GitHub.

本地
Python
Cloudflare MCP Server

Cloudflare MCP Server

一个 MCP 服务器,允许通过 Claude Desktop、VSCode 和其他 MCP 客户端,使用自然语言来管理 Cloudflare 资源(Workers、KV、R2、D1)。

TypeScript
Kubernetes Monitor

Kubernetes Monitor

一个只读的 Kubernetes MCP 服务器,允许通过自然语言界面(如 Claude)查询集群信息和诊断问题。

Python
Portkey MCP Server

Portkey MCP Server

将 Claude 连接到 Portkey 的 API,以管理 AI 配置、工作区、分析和用户访问,从而全面控制 API 使用和设置。

TypeScript
Authenticated MCP SSE Server

Authenticated MCP SSE Server

一个安全的 MCP(模型上下文协议)服务器,托管在 Google Cloud Run 上,通过 Google Cloud IAM 提供身份验证访问,从而实现团队协作。这使得团队能够在官方 MCP 身份验证实施之前,通过互联网共享自定义 MCP 服务器。 **更流畅的翻译版本:** 一个安全的 MCP(模型上下文协议)服务器,部署在 Google Cloud Run 上,它通过 Google Cloud IAM 进行身份验证,从而实现团队协作。 这样,团队就可以在官方 MCP 身份验证功能上线之前,通过互联网共享自定义的 MCP 服务器。

TypeScript
MCP Architect

MCP Architect

通过专门的代理、丰富的资源和强大的工具,促进全面的架构设计和评估,涵盖云计算、人工智能和区块链等不同的架构领域。

TypeScript
MyAIServ MCP Server

MyAIServ MCP Server

一个高性能的 FastAPI 服务器,支持模型上下文协议 (MCP),可与大型语言模型无缝集成,具有 REST、GraphQL 和 WebSocket API,以及实时监控和向量搜索功能。

Python
Workers MCP Demo

Workers MCP Demo

一个演示项目,使用 Cloudflare Workers MCP 创建自定义 AI 工具,这些工具可以与 Claude、Cursor 以及其他支持模型上下文协议 (Model Context Protocol) 的 AI 助手集成。

TypeScript
MCP Server Template for Cursor IDE

MCP Server Template for Cursor IDE

Okay, here's a template and explanation for creating custom tools for Cursor IDE using the Model Context Protocol (MCP), allowing users to deploy their own MCP server to Heroku and connect it to Cursor IDE. This template focuses on providing a solid foundation and clear instructions. **I. Project Structure** ``` my-cursor-tool/ ├── server/ # MCP Server (Python/Flask) │ ├── app.py # Main Flask application │ ├── requirements.txt # Dependencies │ ├── Procfile # Heroku deployment instructions │ └── .env # Environment variables (API keys, etc.) ├── cursor-extension/ # Cursor IDE Extension (TypeScript) │ ├── package.json # Extension manifest │ ├── src/ │ │ └── extension.ts # Main extension logic │ └── tsconfig.json # TypeScript configuration ├── README.md # Instructions for setup and deployment └── LICENSE # (Optional) License ``` **II. `server/app.py` (MCP Server - Python/Flask)** ```python from flask import Flask, request, jsonify import os import json app = Flask(__name__) # Load environment variables (if any) # Example: OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") @app.route('/.well-known/model-context', methods=['GET']) def model_context_discovery(): """ Returns the Model Context Protocol discovery document. """ discovery_document = { "model_context_protocol_version": "0.1", "capabilities": { "execute": { "path": "/execute", "http_method": "POST", "input_schema": { "type": "object", "properties": { "query": {"type": "string", "description": "The user's query."}, "context": { "type": "object", "description": "Contextual information from the IDE.", "properties": { "selectedText": {"type": "string", "description": "The currently selected text in the editor."}, "languageId": {"type": "string", "description": "The language of the current file."}, "filepath": {"type": "string", "description": "The path to the current file."}, "activeEditorContent": {"type": "string", "description": "The entire content of the active editor."}, }, "required": ["selectedText", "languageId", "filepath", "activeEditorContent"] } }, "required": ["query", "context"] }, "output_schema": { "type": "object", "properties": { "result": {"type": "string", "description": "The result of the execution."} }, "required": ["result"] } } } } return jsonify(discovery_document) @app.route('/execute', methods=['POST']) def execute(): """ Executes the tool based on the user's query and context. """ try: data = request.get_json() query = data['query'] context = data['context'] # --- Your Tool Logic Here --- # Example: Use the query and context to generate a response. # This is where you integrate with your desired service (e.g., OpenAI, a database, etc.) selected_text = context['selectedText'] language_id = context['languageId'] filepath = context['filepath'] active_editor_content = context['activeEditorContent'] # Simple example: Echo the query and selected text. result = f"Query: {query}\nSelected Text: {selected_text}\nLanguage: {language_id}\nFilepath: {filepath}" # --- End of Tool Logic --- return jsonify({"result": result}) except Exception as e: print(f"Error: {e}") # Log the error for debugging return jsonify({"error": str(e)}), 500 # Return an error response if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) # Heroku uses the PORT environment variable app.run(debug=True, host='0.0.0.0', port=port) ``` **III. `server/requirements.txt`** ``` Flask python-dotenv # For local development (optional) ``` **IV. `server/Procfile`** ``` web: gunicorn app:app --log-file - --log-level debug ``` **V. `server/.env` (Optional - for local development)** ``` # Example: # OPENAI_API_KEY=your_openai_api_key ``` **VI. `cursor-extension/package.json`** ```json { "name": "my-cursor-tool", "displayName": "My Cursor Tool", "description": "A custom tool for Cursor IDE.", "version": "0.0.1", "engines": { "vscode": "^1.75.0" // Or the minimum supported version of VS Code/Cursor }, "categories": [ "Other" ], "activationEvents": [ "*" // Activate on all events (adjust as needed) ], "main": "./dist/extension.js", "contributes": { "modelContextProviders": [ { "name": "my-tool", "displayName": "My Tool", "description": "Connects to my custom tool server.", "url": "YOUR_HEROKU_APP_URL" // <--- REPLACE THIS WITH YOUR HEROKU APP URL } ] }, "scripts": { "vscode:prepublish": "npm run compile", "compile": "tsc -p ./", "watch": "tsc -watch -p ./", "pretest": "npm run compile && npm run lint", "lint": "eslint src --ext ts", "test": "node ./out/test/runTest.js" }, "devDependencies": { "@types/vscode": "^1.75.0", // Or the appropriate version "@types/glob": "^8.0.1", "@types/mocha": "^10.0.1", "@types/node": "16.x", "@vscode/test-electron": "^2.2.0", "eslint": "^8.30.0", "@typescript-eslint/eslint-plugin": "^5.45.0", "@typescript-eslint/parser": "^5.45.0", "glob": "^8.1.0", "mocha": "^10.1.1", "typescript": "^4.9.4" } } ``` **VII. `cursor-extension/src/extension.ts`** ```typescript import * as vscode from 'vscode'; export function activate(context: vscode.ExtensionContext) { console.log('Congratulations, your extension "my-cursor-tool" is now active!'); // No specific activation logic needed here, as the Model Context Provider // is declared in package.json and handled by Cursor. } export function deactivate() {} ``` **VIII. `cursor-extension/tsconfig.json`** ```json { "compilerOptions": { "module": "commonjs", "target": "es2020", "lib": [ "es2020" ], "sourceMap": true, "rootDir": "src", "outDir": "dist", "strict": true, "esModuleInterop": true, "skipLibCheck": true, "forceConsistentCasingInFileNames": true, "moduleResolution": "node" }, "exclude": [ "node_modules", ".vscode-test" ] } ``` **IX. `README.md` (Crucial Instructions)** ```markdown # My Cursor Tool This is a custom tool for Cursor IDE that connects to a server deployed on Heroku using the Model Context Protocol (MCP). ## Prerequisites * **Heroku Account:** You'll need a Heroku account to deploy the server. * **Heroku CLI:** Install the Heroku Command Line Interface (CLI). See [https://devcenter.heroku.com/articles/heroku-cli](https://devcenter.heroku.com/articles/heroku-cli) * **Cursor IDE:** Install Cursor IDE. * **Node.js and npm:** Required for building the Cursor extension. * **Python 3.x:** Required for running the server locally (optional). ## Deployment to Heroku 1. **Login to Heroku:** ```bash heroku login ``` 2. **Create a Heroku App:** ```bash heroku create my-cursor-tool-server # Replace with a unique name ``` 3. **Navigate to the `server` directory:** ```bash cd server ``` 4. **Initialize a Git repository (if you haven't already):** ```bash git init git add . git commit -m "Initial commit" ``` 5. **Push the code to Heroku:** ```bash heroku git:remote -a my-cursor-tool-server # Replace with your app name git push heroku main ``` 6. **Set Environment Variables (if needed):** If your tool requires API keys or other sensitive information, set them as environment variables in Heroku: ```bash heroku config:set OPENAI_API_KEY=your_openai_api_key ``` 7. **Check the Heroku Logs:** After deployment, check the Heroku logs for any errors: ```bash heroku logs --tail ``` ## Installing the Cursor Extension 1. **Navigate to the `cursor-extension` directory:** ```bash cd ../cursor-extension ``` 2. **Install Dependencies:** ```bash npm install ``` 3. **Compile the Extension:** ```bash npm run compile ``` 4. **Open Cursor IDE.** 5. **Open the `cursor-extension` directory in Cursor IDE.** (File -> Open Folder...) 6. **Run the Extension:** * Press `F5` to start the extension in debug mode. This will open a new Cursor window with your extension loaded. ## Connecting the Extension to Your Heroku Server 1. **Get Your Heroku App URL:** Find the URL of your deployed Heroku app. It's usually in the format `https://my-cursor-tool-server.herokuapp.com`. You can find it on the Heroku dashboard for your app. 2. **Update `package.json`:** In the `cursor-extension/package.json` file, replace `YOUR_HEROKU_APP_URL` with the actual URL of your Heroku app in the `contributes.modelContextProviders.url` field. **Make sure to include the `https://` prefix.** ```json "contributes": { "modelContextProviders": [ { "name": "my-tool", "displayName": "My Tool", "description": "Connects to my custom tool server.", "url": "https://my-cursor-tool-server.herokuapp.com" // <--- REPLACE THIS } ] } ``` 3. **Reload the Extension:** After updating `package.json`, you'll need to reload the extension in Cursor IDE. If you're running in debug mode (F5), stop the debugger and run it again. If you installed the extension, you may need to uninstall and reinstall it. ## Using the Tool in Cursor IDE 1. **Open a file in Cursor IDE.** 2. **Select some text.** 3. **Type `@my-tool` followed by your query.** (Replace `my-tool` with the `name` you defined in `package.json`.) 4. **Press Enter.** 5. **The result from your Heroku server should appear in the chat window.** ## Troubleshooting * **Check Heroku Logs:** Use `heroku logs --tail` to see any errors on the server side. * **Check the Cursor IDE Developer Console:** Open the developer console in the Cursor IDE window (Help -> Toggle Developer Tools) to see any errors from the extension. * **Verify the URL:** Double-check that the URL in `package.json` is correct and includes `https://`. * **CORS Issues:** If you encounter CORS (Cross-Origin Resource Sharing) errors, you may need to configure CORS on your Flask server. (This is less likely with Heroku, but possible). You can use the `flask-cors` library. ## License [Your License Here (Optional)] ``` **X. Key Improvements and Explanations** * **Clear Project Structure:** Organized into `server` and `cursor-extension` directories for clarity. * **Complete `app.py`:** Includes the `/model-context` discovery endpoint and a basic `/execute` endpoint. The `/execute` endpoint now receives and prints the context data. Error handling is included. * **`Procfile` for Heroku:** Specifies how to run the Flask app on Heroku. * **Detailed `README.md`:** Provides step-by-step instructions for deployment, installation, and usage. Includes troubleshooting tips. This is the *most important* part for user-friendliness. * **Environment Variables:** Demonstrates how to use environment variables for API keys (important for security). * **Error Handling:** The server includes basic error handling to catch exceptions and return appropriate error responses to Cursor. * **CORS Note:** Adds a note about CORS issues and how to address them if they arise. * **`extension.ts`:** Kept minimal, as the core logic is handled by the MCP. * **Up-to-date Dependencies:** Uses more recent versions of dependencies. * **Heroku CLI Instructions:** Provides specific Heroku CLI commands. * **Debugging Tips:** Includes instructions for checking Heroku logs and the Cursor IDE developer console. * **Explicit URL Instructions:** Emphasizes the importance of the correct Heroku app URL in `package.json`. * **Example Tool Logic:** Provides a simple example of how to access the query and context data within the `/execute` endpoint. * **Gunicorn:** Uses Gunicorn, a production-ready WSGI server, in the `Procfile`. **XI. How to Use This Template** 1. **Clone the Template:** Copy the file structure and code into your own project. 2. **Implement Your Tool Logic:** Modify the `server/app.py` file to implement the core logic of your tool within the `/execute` endpoint. This is where you'll integrate with your desired services (e.g., OpenAI, a database, etc.). 3. **Deploy to Heroku:** Follow the instructions in the `README.md` file to deploy the server to Heroku. 4. **Install the Cursor Extension:** Follow the instructions in the `README.md` file to install the Cursor extension. 5. **Connect the Extension:** Update the `package.json` file with your Heroku app URL. 6. **Test Your Tool:** Use the tool in Cursor IDE by typing `@my-tool` followed by your query. **XII. Important Considerations** * **Security:** Be very careful about handling sensitive data (API keys, user credentials, etc.). Use environment variables and avoid hardcoding secrets in your code. * **Scalability:** For more complex tools, consider using a more scalable architecture for your server (e.g., using a database, message queue, etc.). * **Error Handling:** Implement robust error handling in your server to gracefully handle unexpected errors. * **Rate Limiting:** If you're using an external API, be mindful of rate limits and implement appropriate rate limiting in your server. * **User Experience:** Design your tool to be easy to use and provide helpful feedback to the user. * **Asynchronous Operations:** For long-running tasks, consider using asynchronous operations (e.g., using Celery or similar) to avoid blocking the Flask server. This template provides a solid starting point for creating custom tools for Cursor IDE using the Model Context Protocol. Remember to adapt the code and instructions to your specific needs. Good luck!

Python
Morpho API MCP Server

Morpho API MCP Server

启用与 Morpho GraphQL API 的交互,通过模型上下文协议 (MCP) 服务器提供访问市场数据、金库、仓位和交易的工具。

JavaScript
railway-mcp

railway-mcp

让 Claude 和 Cursor 通过自然语言管理你的 Railway 基础设施。自主且安全地部署、配置和监控。

TypeScript