发现优秀的 MCP 服务器

通过 MCP 服务器扩展您的代理能力,拥有 12,350 个能力。

全部12,350
StockFlow MCP Server

StockFlow MCP Server

一个模型上下文协议服务器,通过雅虎财经提供实时股票数据和期权分析,使大型语言模型(LLM)能够访问市场数据、分析股票和评估期权策略。

APK Security Guard MCP Suite

APK Security Guard MCP Suite

Provides a one-stop automated solution for Android APK security analysis by integrating tools like JEB, JADX, APKTOOL, FlowDroid, and MobSF into unified MCP standard API interfaces.

FakeStore MCP

FakeStore MCP

A Model Context Protocol server that enables AI assistants to interact with a complete e-commerce application, providing authentication, product browsing, and shopping cart management through standardized MCP tools.

Fetch MCP Server

Fetch MCP Server

提供通过简单的 API 调用来获取和转换各种格式(HTML、JSON、纯文本和 Markdown)的 Web 内容的功能。

PDF Reader MCP Server (@shtse8/pdf-reader-mcp)

PDF Reader MCP Server (@shtse8/pdf-reader-mcp)

一个使用 Node.js/TypeScript 构建的 MCP 服务器,允许 AI 代理安全地读取 PDF 文件(本地或 URL),并提取文本、元数据或页数。使用 pdf-parse 库。

This is my package laravel-mcp-server

This is my package laravel-mcp-server

MCP Agent Platform

MCP Agent Platform

一个多智能体人机交互系统,通过集成的视觉识别、语音识别和语音合成能力,实现自然交互。

Kakao Bot MCP Server

Kakao Bot MCP Server

An implementation of the Model Context Protocol that connects AI agents to Kakao Official Accounts, allowing users to send various message templates through the Kakao Developers API.

AI Agent with MCP

AI Agent with MCP

Playground create my first MCP (Model Context Protocol) server

facebook-mcp-server

facebook-mcp-server

facebook-mcp-server

Selector AI FastMCP

Selector AI FastMCP

一个模型上下文协议(MCP)服务器,它通过一个支持流式传输的服务器和一个基于 Docker 的客户端(通过 stdin/stdout 通信)来实现与 Selector AI 的实时、交互式 AI 聊天。

MCP AI Service Platform

MCP AI Service Platform

A powerful AI service platform that provides complete MCP tool calling capabilities and RAG knowledge base functionality, enabling users to connect to multiple MCP servers and perform intelligent document search.

MCP Image Generation Server

MCP Image Generation Server

一个用 Go 实现的 MCP (模型上下文协议) 服务器工具

MCP Demo

MCP Demo

Okay, I can't directly "demonstrate an MCP server" in the sense of running code and showing you output here. That requires a real server environment and access to aviation weather data APIs. However, I can provide you with a conceptual outline and code snippets (in Python, a common language for this) to illustrate how such a server *could* be built. This will give you a solid understanding of the components involved. **Conceptual Outline** 1. **Data Source:** The server needs to fetch aviation weather data from a reliable source. Common sources include: * **NOAA Aviation Weather Center (AWC):** Provides METARs, TAFs, PIREPs, and other aviation weather products. Often accessed via their XML/text feeds. * **Aviation Weather APIs (Commercial):** Some companies offer paid APIs that provide more structured data and potentially better performance. Examples include Aviation Edge, CheckWX, etc. 2. **Server Framework:** Choose a web server framework to handle incoming requests and send responses. Popular choices include: * **Flask (Python):** Lightweight and easy to learn. Good for simple APIs. * **FastAPI (Python):** Modern, high-performance, and automatically generates API documentation. * **Node.js (JavaScript):** If you prefer JavaScript. Express.js is a common framework. 3. **Data Parsing and Storage (Optional):** * **Parsing:** The data from the source (e.g., XML from NOAA) needs to be parsed into a usable format (e.g., Python dictionaries or objects). * **Storage (Optional):** For performance, you might want to cache the weather data in a database (e.g., Redis, PostgreSQL) or in memory. This avoids hitting the external API too frequently. 4. **API Endpoints:** Define the API endpoints that clients will use to request data. For example: * `/metar/{icao}`: Get the METAR for a specific airport (ICAO code). * `/taf/{icao}`: Get the TAF for a specific airport. * `/airports/search?q={query}`: Search for airports by name or ICAO code. 5. **Error Handling:** Implement proper error handling to gracefully handle issues like invalid airport codes, API errors, and network problems. 6. **Security (Important):** If the server is publicly accessible, implement security measures to prevent abuse. This might include rate limiting, authentication, and authorization. **Python (Flask) Example Code Snippets** ```python from flask import Flask, jsonify, request import requests import xml.etree.ElementTree as ET # For parsing XML (if using NOAA) app = Flask(__name__) # Replace with your actual NOAA ADDS URL or other API endpoint NOAA_ADDS_URL = "https://aviationweather.gov/adds/dataserver/.......your_query_here......." # Example, needs a real query # In-memory cache (for demonstration purposes only; use a real database for production) weather_cache = {} def fetch_metar_from_noaa(icao): """Fetches METAR data from NOAA ADDS for a given ICAO code.""" try: # Construct the NOAA ADDS query (example, adjust as needed) query = f"?dataSource=metars&requestType=retrieve&format=xml&stationString={icao}&hoursBeforeNow=1" url = NOAA_ADDS_URL.replace(".......your_query_here.......", query) response = requests.get(url) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) xml_data = response.text root = ET.fromstring(xml_data) # Parse the XML to extract the METAR information metar_element = root.find(".//METAR/raw_text") # Adjust path based on XML structure if metar_element is not None: metar_text = metar_element.text return metar_text else: return None # METAR not found except requests.exceptions.RequestException as e: print(f"Error fetching data from NOAA: {e}") return None except ET.ParseError as e: print(f"Error parsing XML: {e}") return None @app.route('/metar/<icao>') def get_metar(icao): """API endpoint to get METAR data for a given ICAO code.""" icao = icao.upper() # Ensure ICAO is uppercase # Check the cache first if icao in weather_cache: print(f"Fetching METAR for {icao} from cache") metar = weather_cache[icao] else: print(f"Fetching METAR for {icao} from NOAA") metar = fetch_metar_from_noaa(icao) if metar: weather_cache[icao] = metar # Store in cache if metar: return jsonify({'icao': icao, 'metar': metar}) else: return jsonify({'error': 'METAR not found for this ICAO code'}), 404 @app.route('/airports/search') def search_airports(): """Example endpoint for searching airports (replace with real implementation).""" query = request.args.get('q') if not query: return jsonify({'error': 'Missing query parameter'}), 400 # Replace this with a real airport search implementation (e.g., from a database) # This is just a placeholder if query.lower() == "jfk": results = [{"icao": "KJFK", "name": "John F. Kennedy International Airport"}] elif query.lower() == "lax": results = [{"icao": "KLAX", "name": "Los Angeles International Airport"}] else: results = [] return jsonify(results) if __name__ == '__main__': # Production: Use a proper WSGI server (e.g., gunicorn, uWSGI) app.run(debug=True) # Debug mode for development only ``` **Explanation of the Code:** * **Imports:** Imports necessary libraries (Flask, `requests` for making HTTP requests, `xml.etree.ElementTree` for parsing XML). * **`NOAA_ADDS_URL`:** **CRITICAL:** You *must* replace this with a valid URL for the NOAA ADDS server. The example is just a placeholder. You'll need to construct the correct query parameters to get the data you want. Refer to the NOAA ADDS documentation. * **`weather_cache`:** A simple in-memory dictionary to cache weather data. This is for demonstration only. In a real application, use a database like Redis. * **`fetch_metar_from_noaa(icao)`:** * Constructs the NOAA ADDS URL with the ICAO code. * Uses `requests` to fetch the data. * Parses the XML response using `xml.etree.ElementTree`. * Extracts the METAR text from the XML. **Important:** The XML structure can be complex. You'll need to carefully inspect the NOAA ADDS XML response to determine the correct XPath to the METAR data. * Handles potential errors (network errors, XML parsing errors). * **`get_metar(icao)`:** * The API endpoint for `/metar/{icao}`. * Checks the cache first. * If not in the cache, fetches the data from NOAA. * Returns the METAR data as a JSON response. * Returns a 404 error if the METAR is not found. * **`search_airports()`:** A placeholder for an airport search endpoint. You'll need to replace this with a real implementation that queries a database of airports. * **`app.run(debug=True)`:** Starts the Flask development server. **Important:** Do not use `debug=True` in a production environment. Use a proper WSGI server (e.g., gunicorn, uWSGI). **To Run This Example (After Replacing the Placeholder URL):** 1. **Install Flask and Requests:** ```bash pip install flask requests ``` 2. **Save the code:** Save the code as a Python file (e.g., `aviation_server.py`). 3. **Run the server:** ```bash python aviation_server.py ``` 4. **Test the API:** Open a web browser or use `curl` to test the API endpoints: * `http://127.0.0.1:5000/metar/KJFK` (Replace `KJFK` with a valid ICAO code) * `http://127.0.0.1:5000/airports/search?q=jfk` **Key Improvements and Considerations for a Production System:** * **Error Handling:** More robust error handling, including logging and more informative error messages. * **Configuration:** Use environment variables or a configuration file to store API keys, database connection strings, and other settings. * **Data Validation:** Validate the ICAO code and other input parameters to prevent errors and security vulnerabilities. * **Rate Limiting:** Implement rate limiting to prevent abuse of the API. * **Authentication/Authorization:** If the API is sensitive, implement authentication and authorization to control access. * **Asynchronous Operations:** For better performance, use asynchronous operations (e.g., `asyncio` in Python) to fetch data from the external API without blocking the server. * **Testing:** Write unit tests and integration tests to ensure the server is working correctly. * **Deployment:** Deploy the server to a production environment (e.g., AWS, Google Cloud, Azure) using a proper WSGI server (e.g., gunicorn, uWSGI). * **Monitoring:** Monitor the server's performance and error rates. * **TAF Support:** Implement the `/taf/{icao}` endpoint to fetch Terminal Aerodrome Forecasts. This will involve a similar process of querying the NOAA ADDS server (or another API) and parsing the TAF data. * **Data Source Abstraction:** Create an abstraction layer for the data source. This will make it easier to switch to a different API in the future. **Chinese Translation of Key Concepts** * **MCP Server:** MCP服务器 (MCP fúwùqì) - While "MCP" isn't a standard term in this context, it's understood as a server providing specific data. A more descriptive term might be 航空气象数据服务器 (Hángkōng qìxiàng shùjù fúwùqì) - Aviation Weather Data Server. * **Aviation Weather Data:** 航空气象数据 (Hángkōng qìxiàng shùjù) * **METAR:** 机场气象报告 (Jīchǎng qìxiàng bàogào) * **TAF:** 机场预报 (Jīchǎng yùbào) * **ICAO Code:** 国际民航组织机场代码 (Guójì Mínháng Zǔzhī jīchǎng dàimǎ) * **API Endpoint:** API端点 (API duāndiǎn) * **Data Source:** 数据源 (Shùjù yuán) * **Parsing:** 解析 (Jiěxī) * **Caching:** 缓存 (Huǎncún) * **Error Handling:** 错误处理 (Cuòwù chǔlǐ) * **Rate Limiting:** 速率限制 (Sùlǜ xiànzhì) * **Authentication:** 身份验证 (Shēnfèn yànzhèng) * **Authorization:** 授权 (Shòuquán) This comprehensive explanation and code example should give you a strong foundation for building your own aviation weather data server. Remember to replace the placeholder URL with a valid NOAA ADDS query and adapt the code to your specific needs. Good luck!

Remote MCP Server Authless

Remote MCP Server Authless

A deployable MCP server on Cloudflare Workers that provides tools without requiring authentication, allowing users to connect from Cloudflare AI Playground or Claude Desktop.

NN-GitHubTestRepo

NN-GitHubTestRepo

从 MCP 服务器演示创建。

Laravel Forge MCP Server

Laravel Forge MCP Server

A minimalist MCP server that integrates with Laravel Forge, allowing users to manage their Laravel Forge servers, sites, and deployments through AI assistants like Claude Desktop, Windsurf, or Cursor.

Model Context Protocol (MCP)

Model Context Protocol (MCP)

模型上下文协议 (MCP) 是一种开放标准,它使开发者能够在他们的数据源和人工智能驱动的工具之间建立安全的双向连接。该架构非常简单:开发者可以通过 MCP 服务器公开他们的数据,或者构建连接到这些服务器的 AI 应用程序(MCP 客户端)。

MCP Weather Server

MCP Weather Server

使用 AccuWeather API 提供每小时天气预报,使用户能够访问当前天气状况和针对特定位置量身定制的详细 12 小时预报。

Twitter MCP Server

Twitter MCP Server

提供用于与 Twitter 交互的工具,以使用 agent-twitter-client 库按 ID 检索推文和发布新推文。

Remote MCP Server on Cloudflare

Remote MCP Server on Cloudflare

Storacha MCP Storage Server

Storacha MCP Storage Server

通过标准化的模型上下文协议接口,使人工智能应用能够与去中心化存储进行交互,从而实现文件上传、检索和身份管理。

focus_mcp_data

focus_mcp_data

DataFocus 下的智能数据查询插件支持多轮对话,提供即插即用的 ChatBI 功能。

UUID MCP Provider

UUID MCP Provider

A simple Model Context Protocol server that provides timestamp-based UUID v7 identifiers when called by an LLM, offering chronologically sortable unique IDs with no input parameters needed.

YARR Media Stack MCP Server

YARR Media Stack MCP Server

一个综合的模型上下文协议服务器,连接大型语言模型(LLM)与自托管媒体服务,从而实现对电视节目、电影、下载和通知的自然语言控制,同时保持传统的 API 访问方式。

YouTube MCP Server

YouTube MCP Server

一个服务器,它通过模型上下文协议实现与 YouTube 数据的交互,允许用户搜索视频、检索视频/频道的详细信息以及获取评论。

Delve MCP

Delve MCP

一个基于 TypeScript 的 MCP 服务器,为 Go 程序的 Delve 调试器提供完整的接口,从而可以通过自然语言命令调试、追踪和分析 Go 代码。

Semantic Scholar MCP Server

Semantic Scholar MCP Server

镜子 (jìng zi)

repo-to-txt-mcp

repo-to-txt-mcp

用于分析和转换 Git 仓库为文本文件,以供 LLM 上下文使用的 MCP 服务器。 (Alternatively, a more literal translation could be:) 用于分析和将 Git 仓库转换为文本文件,以供 LLM 上下文使用的 MCP 服务器。 **Explanation of Choices:** * **MCP Server:** This is kept as "MCP 服务器" as it's likely a specific product or technology with a known abbreviation. If you have more context about what MCP stands for, it might be possible to translate it more fully. * **Analyzing and Converting:** "分析和转换" is a standard and clear translation for these actions. * **Git Repositories:** "Git 仓库" is the standard Chinese term for Git repositories. * **Text Files:** "文本文件" is the standard Chinese term for text files. * **LLM Context:** "LLM 上下文" is used. While you could translate "LLM" to "大型语言模型" (Large Language Model), keeping it as "LLM" is common in technical contexts, especially if the target audience is familiar with the abbreviation. "上下文" is the standard translation for "context." * **For:** "以供" is a more formal and precise way to say "for" in this context, implying "for the purpose of." The first translation is slightly more natural-sounding in Chinese. The second is more literal. Choose the one that best suits your needs and target audience.

mcp-server-restart

mcp-server-restart

镜子 (jìng zi)